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FATIGUE CRACK PROPAGATION RESISTANCE OF BETA-ANNEALED
Ti-6A-4V ALLOYS OF DIFFERING INTERSTITIAL OXYGEN CONTENTS

INTRODUCTION

Though it is well known that interstitial oxygen can markedly affect the fracture
toughness and uniaxial tensile properties of titanium alloys, the influence of oxygen content
on fatigue crack propagation resistance in these alloys is poorly understood. Moreover, the
limited data available on this subject appear to be in disagreement [1-3]. Reference 1, for
instance, reported a reduction in fatigue crack growth rates with ;-creased oxygen content
in commercially pure a-titanium alloys. On the other hand, subsequent work with
a-titanium alloys, as reported in Ref. 2, indicated the opposite result: an increase in growth
rates with increased oxygen content. In harmony with this latter finding, Ref. 3 reported
that recrystallization annealed Ti-6AI-4V exhibited increased growth rates with increased
oxygen content.

However, no results have been reported to date for the beta-annealed, Widmanstdtten
microstructure, which has been related to superior fatigue crack propagation resistance in
Ti-6A1-4V of commercial purity [3-5], Accordingly, the purpose of our work is to
examine fatigue crack propagation behavior in four beta-annealed Ti-6A1-4V plates with
respective oxygen contents of 0.06, 0.11, 0.18, and 0.20 weight percent. For the alloy with
0.20 wt-% oxygen, we reported [51 that fatigue crack growth rates for the a/03-rolled, mill-
annealed condition can be reduced by as much as an order of magnitude with a beta anneal,
owing primarily to a transition to structure-sensitive crack growth in the Widmanstdtten
microstructure. We found that the transition corresponds to the point at which the reversed
plastic zone attains the average Widmanstdtten packet size, with the reduction in growth
rates below the transition attributable to crystallographic bifurcation in the Widmanstldtten
packets.

MATERIALS AND PROCEDURES

The alloys studied were received in the form of rolled plate, with chemical analyses as
given in Table 1. Each alloy was subjected to the following beta anneal [3]: 0.5 hr at
10388C, cooled to room temperature plus 2 hr at '7320 C, cooled to room temperature. This
heat treatment was performed in a vacuum furnace, with cooling accomplished in a helium
atmosphere at a rate which approximates that in air.

Metallographic samples of each of the resultant Widmanst'dtten microstructures were
polished and etched with Kroll's reagent. From these, some 190 linear intercept measure-
ments of prior beta grain size (10) were made for each alloy, 475 for the Widmansidtten
packet size (lvp) and 600 for the alpha grain size (I1); a minimum of four photomicrographs
was used in each case. Cumulative frequency distributions for 10 and Iwp are exhibited in

Manuscript oubmitted August 16, 1977.
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YODER, COOLEY, AND CROOKER

Table 1 - Chemical Analyses

Content (wt.%)
Alloy -

0 Al V Fe N C H Al]
. , fl

1 0.06 6.0 4,1 0.05 0,008 0,023 0.0050 7.0

2 0,11 6.1 4,0 0.18 0.009 0.02 0,0069 7.6

a 0.18 6.6 4.4 0.20 0,014 0,02 0.0058 b'

4 0.20 6.7 4.3 0.10 0.011 0,03 0.0060 9.2

Note: AI* is the aluminum equivalent [6,7 ]: Al* - Al + -E -+ - 10 (0 + C + 2N).

Fig. 1, together with mean values (Tp, Twp) for each alloy. Figure 2a illustrates the contrast
in IB for alloys 3 and 4, and Fig. 2b illustrates the contrast in Iwp for alloys 1 and 3.
Widmanstfdtten packet sizes range from 17 Mm for alloy 1 to 38 gm for alloy 3. Figure 1
shows that one pair of these alloys (alloys 2 and 3) exhibits values of Tg which are sub.
stantially larger than for the other pair (alloys 1 and 4).

Fatigue crack growth rates (da/dN) were determined in ambient air from compact
tension specimens of 25.4-mm thickness, TL crack orientation [8], half-height to width
ratio of h/W = 0.486, and crack length in the range 0.26 < a1W < 0.62. The stress-intensity
(K) calibration for the specimen is given in Ref. 9. For each of the four alloys, at least two
specimens were subjected to cyclic tension-to-tension loading with a haversine waveform, a
frequency of 5 Hz, and a load ratio R = PrnhPnmax = 0.1. The amplitude of loading, though
held constant throughout the growth rate test of a given specimen, was different for dupli-
cate specimens, so that data could be generated over different, yet overlapl)ing spctra of
stress-intensity range (AK). Crack lengths were measured optically on both faces at 15 X
with Gaertner traveling microscopes.

TesLs for fracture toughness (K,1 ) were also made from these compact tension speci-
mens, in accord with ASTM Method E399-74. Tensile properties were determined for the 7'
and L orientations from standard I 2.8-mm-diameter specimens of 50.8-amm gage length.
These mechanical properties are given in Table 2.

RESULTS AND ANALYSIS

Fatigue Crack Propagation: Transitional Behavior

Cyclic crack growth rates for alloys 1 through 4 are plotted logarithmically as a func-
tion of stress-intensity range in Figs. 3a through 3d respectively. The crack growth behav-
ior of each of the four alloys is distinguished by a clearly defined transition point (indicated
by "T" in each figure). At these points the slope or exponent in the growth rate power law
[10]

daldN = C(AK) 3  (1)

2
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Fig. 2a - Photomnicrographs to Illustrate contrast In prior beta grain size
In alloy 3 (left) and alloy 4 (right)

Fig. 2b - Photomicrographs to illustrate contrast In Widmanst~tten
packet size in alloy 3 (left) and alloy 1 (right)
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Table 2 -- Mechanical Properties

A0lol02% Yield Tensile Young's - Fracture
Orien. Strength Strength Modulus Reduation Elongation* Toughness' Wt'% t rtion a VudEu in Area, l

No. [Oxygen (M;A) -iut" M% KME-l/
N...,- ~ (MIa' a) iii(Are (MPa'm1

/)

10.06 TL, T 740 i0
LT, L 772 829 115 26 10

2 0,11 TL, T 772 869 118 19 10 9at
LT, L 797 887 117 17 a

3 0.18 TL T 81s 906 120 13 a 9t
LT, L 841 931 117 12 a

4 0.20 TL, T 8,9 958 117 16 11 57

LT, L 892 960 119 3 18 -

*50.8-rmm gage length
tlnvalid according to ASTM E399-74

changes by approximately a factor of 2. Transitional values of stress-intensity range (AKT)
vary from 18 MParm11 2 for alloy 1 to 27 MPa'm 1/2 for alloy 3, as noted in Table 3.

Correlation Between Reversed Plastic Zone and Microstructural Dimensions-The
transitional behavior of alloy 4 that we reported elsewhere [ 51 was attributed to a change
from microstructurally sensitive crack growth below the transition to microstructurally
insensitive crack growth above the transition; moreover, it was found that the transition
corresponded to the point at which the reversed plastic zone size [11-13]

rO= 0.132 (2)

attained the average Widmansfttten packet size. The data in Table 3 indicate that this is
true also for alloys 1 through 3. In this table, microstructural dimensions are compared to
the reversed plastic zone size at the transition point ([rC 1 T), the latter being calculated
through Eq. (2), with uy and AKT taken from Tables 2and 3 respectively. For each of the
four alloys, the computed value of [ry ] T agrees well with the respective Widmanstlitten
packet size; values of 70 are approximately an order of magnitude larger than [r ] T, and
values of T. are approximately an order of magnitude smaller.

Structure-Sensitive, Crystallographic Bifurcation (1AK < AKT)--The similarity in
behavior of the four alloys is further illustrated by crack-path sectioning normal to the
fracture surface. Below their respective transition points, alloys 1 through 3 exhibit crystal-
lographic bifurcation in the Widmanstilitten packets similar to that we noted previously in
alloy 4 [5]. Thus within packets that border the Mode I crack plane, multiple parallel
cracks appear with a distinct relation to the orientation of a-phase platelets, as illustrated in
VFig. 4. The reduction in growth rates exhibited below the transition points for all four
alloys is therefore attributable to this bifurcation, which serves to reduce the effective AK
(and thus da/dN) by dispersing the strain field energy of the macroscopic crack among
multiple crack tips.

'i5
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Table 3 - Comparison of Transitional Reversed Plastic Zone Size
to Microstructural Dimensions

Alloy Transitional Rrstd Microstructural Dimensions
Stres ensityAReversedm)
Stress.Intensity Plastic Zone

Wt-% Range, AKT Size, [rclT iw I £

No. Oxygen (MPa-ml/ 2 ) _ _m)

1 (0.06) 18 19 2 17 214

2 (0.11) 20 23 3 28 618

3 (0.18) 27 35 2 38 844

4 (0.20) 23 23 3 24 211

Comparison of Alloy Crack Propagation Rates
(AK < AKT): A 5-Fold Difference

The trend lines drawn through the data points in Fig. 3 are redrawn in Fig. 5 to
facilitate comparison of growth rates for the four alloys.

Widmanst'tten Packet Size: Key to Reduced Growth Rates-Figure 5 shows that sub-
transitional crack growth rates order on the basis of Widmansftdtten packet size, such that
da/dNdecreases with increasing TWP, For example, at AK - 16 MPa-m 1 12 , da/dN is about 5
times less for alloy 3 (Twp = 38 pm) than for alloy 1 (TWp = 17 pm). Such behavior may be
explained on the premise that, with increasing 7wp, the strain-field energy of the macroscopic
crack can be spread over increased volumes of material in the crack tip region, thereby
further reducing the effective AK (and thus da/dN). This presumes that the bifurcation can
extend to the boundaries of Widmanst~tten packets that border the Mode I plane (or pos-
sibly to some lesser dimension related to the maximum plastic zone size).

Effects of Oxygen Content and Prior Beta Grain Size--Further analysis of subtransi-
tional crack growth rates in Fig. 5 leads to the tentative conclusion that interstitial oxygen
content, as well as prior beta grain size, significantly affects fatigue crack propagation rates
by controlling the subsequent Widmanst:itten packet size which develops upon cooling from
the beta phase field. Clearly da/dN does not order on the basis of interstitial oxygen con-
tent alone (when all four alloys are considered), but if the alloys are paired on the basis of
similar prior beta grain size-alloys 1 and 4 (ip = 214 pmr and 211 pm respectively) vs alloys
2 and 3 (To = 618 pm and 844 pm respectively)-then the pair with the greater IB exhibits
the lower growth rates. Yet within each pair the alloy with greater oxygen content exhibits
the lower growth rates. Each of these effects is plausible when considered in terms of the
transformation kinetics of the (3 -÷ a transformation: An increase in Tocould be expected to
reduce the a-phase nucleation rate and thereby serve to increase 7 Wp, if it is asaumed that
nucleation occurs primarily at the grain boundaries [141. Moreover, increased oxygen con-
tent could be expected to reduce the a-phase nucleation rate and to enhance the growth rate

10
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Fig, 5 - Comparison of fatigue crack propagation
resistance of alloys 1 through 4

and thus also to promote an increase in Twp through a shift in the time-temperature-
transformation (TTT) curves to higher temperature and/or lesser time [14,15]. Such a
shift with increased oxygen content has been reported by DeLazaro and Rostoker [161
for Ti-liMo alloys and by Polkin and Kasparova [17] for Ti-3A1-7Mo-liCr alloys. We are
unaware of any such data for the Ti-6A1-4V system.

DISCUSSION

From Table 1, as the oxygen content increases from alloy 1 to alloy 4, so does the
aluminum content and the a-phase stabilizer content as given by the aluminum equivalent,
AI*. Consequently the relative effects of oxygen content on the one hand and of the
remainder of the a-phase stabilizer content on the other would appear to be indeterminate
in our work. Therefore it is perhaps appropriate to extend the effect attributed to intersti-
tial oxygen in the preceding section to include the total a-phase stabilizer content: The
Widmanstatten packet size increases (and thus da/dN decreases) with increasing a-phase
stabilizer content. (The converse effect, namely increasing the 13-phase stabilizer content to
reduce the Widnianstiditten packet size, has recently been reported by Chesnutt, Rhodes,
and Williams [181.)

From Table 2, alloys 1 through 4 each exhibit values of Young's modulus (E) which
are approximately the same for the T and L directions. This may be taken as evidence that

12
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the beta anneal has served to equilibrate any preferred orientation of basal planes (which
may have existed prior to the anneal) relative to the T and L directions [19-21]. Conse-
quently the fatigue crack propagation behavior observed for the TL crack orientation in
alloys 1 through 4 would also be anticipated for the LT orientation.

CONCLUSIONS

0 In the conventional logarithmic plot of fatigue crack growth rate (da/dN) vs stress-
intensity range (AK), each of the four alloys exhibited a significant change in slope at AKT,
a transition point at which the reversed plastic zone appears to attain the average
Widmanstlitten packet size, TWp.

0 For AK < AKT, a crystallographic bifurcation of the Widmanstitten packets occurs,
which is responsible for the markedly lower growth rates below AKT,

* Comparison of alloys indicates that the larger the average Widmanst'd tten packet
size, the lower the fatigue crack growth rates, a 5-fold difference in da/dN is observed
between the most and least resistant of the four alloys.

* The influence of interstitial oxygen (or a-phase stabilizer content), as well as prior
beta grain size (Tp), on fatigue crack propagation resistance appears to be indirect but im-
portant, namely to control the size of the average Widmanst'ltten packet which forms upon
cooling from above the beta transus.
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